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Abstract

A Newton-BICGSTAB solver has been developed to reduce the CPU execution time of

BWR core simulators. The new solver treats the strong non-linearities in the problem explicitly

using the Newton’s method, replacing the traditionally used nested iterative approach. The

Newton’s method provides the solver with a higher-than-linear convergence rate, assuming that a

good initial estimate of the unknowns is provided. Within each Newton iteration, an appropriately

preconditioned BICGSTAB method is utilized for solving the linearized system of equations.

Taking advantage of the higher convergence rate provided by the Newton’s method and utilizing

an efficient preconditioned BICGSTAB solver, we have developed a computationally efficient

Newton-BICGSTAB solver to evaluate the three-dimensional, two-group neutron diffusion

equations coupled with a two-phase flow model within a BWR core simulator.

The robustness of the solver has been tested against numerous BWR core configurations

and consistent results have been observed each time. The Newton-BICGSTAB solver provides an

overall speedup of around 1.7 to the core simulator, with reference to the traditional approach.

Isolating the solver portion of the core simulator, one can see that the new algorithm actually

provides a speedup of around 1.9, of which 48% can be attributed to the BICGSTAB solver and

the remaining 52% to Newton’s method.
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I. INTRODUCTION

In the course of performing a boiling water reactor (BWR) reload core analysis, a core

simulator is extensively used in the preliminary process of choosing a pair of loading pattern-

control rod pattern (LP-CRP) by verifying the attractiveness of the pair for various normal

operating conditions as well as different accident scenarios to guarantee a safe and economical

operation of the reactor. Therefore, having a fast core simulator is an important factor in

expediting the reload core design and analysis.

Automated mathematical optimization tools developed for determining an optimum LP-

CRP pairing in a BWR core are becoming available and can be used by a core designer to ease the

process of selecting a good LP-CRP pair for a particular reload core design. Independent of the

optimization method employed by the tools, e.g. simulated annealing (SA), genetic algorithm

(GA), neural network or taboo search, these tools have to evaluate thousands of LP-CRP pairings

to assess their attractiveness before arriving at the optimum pair. Each evaluation involves solving

the three-dimensional, two-group neutron diffusion equation coupled with the two-phase fluid

flow model, e.g. the three-equation mixture drift flux model. Given that these tightly coupled non-

linear equations must also be solved as a function of cycle burnup, the associated computational

burden could become prohibitive.

One option to accelerate the optimization process is to tune the optimization parameters of

the employed optimization method in order to reach the optimum solution faster and, hence,

reducing the number of LP-CRP pairs to evaluate. In addition, we believe that reducing the time

associated with the evaluation of a single LP-CRP pair is a key factor for reducing the overall

optimization running time. In this project, this target is pursued by assessing the effectiveness of a
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Newton-Krylov solver in replacing the nested iterative approach or similar methods currently

utilized by most BWR core simulators for treating the non-linear feedback properties. Addressing

the non-linearity of the problem explicitly using the Newton’s method, which is capable of

performing simultaneous updates of all unknowns, aided by an appropriately preconditioned

Krylov method for solving the linearized system of equations within the Newton iteration, should

reduce the CPU execution time of an optimization run.

This paper summarizes the development of a robust and computationally efficient

Newton-Krylov algorithm to solve the three-dimensional, two-group neutron diffusion equations

coupled with a two-phase flow model. To assess the performance of this new algorithm, we have

implemented the Newton-Krylov algorithm in the core simulator part of the large-scale in-core

fuel management optimization code FORMOSA-B [7, 10] replacing the currently utilized

traditional nested iterative algorithm. Although results reported in this paper are based upon the

implementation in the FORMOSA-B code, they should be reproducible by other BWR core

simulators.

This paper highlights the important steps in the development of the Newton-Krylov solver.

Section II discusses the basic questions need to be answered in developing the new solver.

Mathematical background on the development of the solver is also briefly presented in this

section along with the generic form of the Newton-Krylov algorithm. The efforts in developing an

appropriate preconditioner to accompany the selected Krylov solver are discussed in Section III.

Section IV explores the possibility of implementing an inexact Newton’s method. This section

only introduces the variants of inexact Newton’s method examined, with the performance of these

methods discussed later in the paper. Section V presents some results from testing the new solver

on a single loading pattern, i.e. performing a load follow calculation, as well as on multiple LP-
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CRP pairs, i.e. performing an optimization run. Finally, Section VI presents conclusions and

provides suggestions for future research to improve the performance of the new solver.

II. METHODOLOGY

II. A. Basic Questions to be Addressed

In solving the neutron diffusion equation, non-linearities originate through neutron cross

section dependencies on thermal hydraulics conditions, e.g. fuel temperature, coolant density,

coolant temperature, and transient fission product number densities, e.g. Xe135 and Sm149. In

addition, the nature of the iterative mathematical solver may also introduce non-linearities, e.g.

non-linear nodal iterative method. Given this large number of sources of non-linearity, several

questions related to the implementation of the Newton-Krylov solver have had to be addressed.

The first of many basic questions to be addressed is related to determining which

unknowns, including the non-linear feedbacks unknowns, should be updated simultaneously by

the Newton’s method. To answer this question, we have performed a comprehensive study to

determine which feedback mechanisms can be categorized as strong feedbacks. If the total

number of outer (fission-source) iterations increases noticeably when a non-linear feedback effect

is treated, then the feedback is categorized as a strong feedback. The non-linear feedbacks

associated with the thermal hydraulics, coolant inlet flow redistribution, transient fission

products, and the non-linear nodal iterative method spatial coupling correction coefficients have

been examined. The behaviors of the non-linear feedbacks on four core types, a 368 assembly GE

BWR/4 core, an 800 assembly GE BWR/6 core, a 724 assembly GE BWR/3 core, and a 560

assembly GE BWR/4 core, have been evaluated to verify the consistency of the results.
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Table I presents the cases examined during this study and the stopping criteria utilized.

The results of this study are summarized in Table II. Included in this table are results from

performing the study using two different sets of stopping criteria. The cases examined are chosen

such that the individual effect of a certain feedback can be isolated (cases 1, 2, 3, and 5) as well as

the aggregate effect of several feedbacks (cases 4 and 6 through 10). Note that the ratio is defined

as

, (1)

where denotes the number of outer iterations for a particular combination of non-linear

feedbacks being tested and denotes the number of outer iterations without nodal, thermal

hydraulics, coolant inlet flow redistribution, and critical flow search feedbacks treated.

Averaged over the four core types, Case 1 shows that utilization of a nodal method in

place of the coarse mesh finite difference (CMFD) method increases the number of outer

iterations on average by 12% and 19% for the loose and tighter stopping criteria, respectively.

Due to these moderate changes in the number of iterations, this feedback mechanism is

categorized as a weak feedback.

Case 2 shows the effect of thermal hydraulics feedback without flow redistribution,

critical flow search, and spacer void model. Averaged over four core types, this feedback effect is

considered a strong feedback mechanism since it increases the number of outer iterations by

around 50%, regardless of the stopping criteria employed.

Comparing the ratio values for Cases 2 and 3, one can see that performing the inlet flow

redistribution, such that the core has uniform inlet and outlet pressures for all flow channels, does

Ratio
nouter

Case

nouter
Ref

-------------=

nouter
Case

nouter
Ref
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not significantly change the number of outer iterations. Similar observation can also be made on

Cases 6 and 7, where the nodal method is utilized for solving the three-dimensional, two-group

neutron diffusion equation instead of the CMFD method. Therefore, the flow redistribution

feedback is categorized as a weak feedback.

Observing the ratio values of Cases 3 and 4 as well as Cases 7 and 8, one can see that the

critical flow search feedback mechanism can actually be categorized as a strong feedback. This

feedback adds 9% to 83% increase in the number of outer iterations on top of the already strong

thermal hydraulics feedbacks. However, in this project the critical flow search feedback will be

treated in a nested iterative fashion with other weak feedbacks.

Although employing the spacer void model does not change the number of outer iterations

considerably, it will still be treated using the Newton’s method since the spacer void model

directly affects the coolant density distribution which is a part of the thermal hydraulics model.

Comparing the ratio values of Cases 10 and 8, with an exception for the 724 assembly GE BWR/

3 core, one can see that the fission product feedback changes the number of outer iterations by

less than 10% and, hence, is categorized as a weak feedback.

Based on these results, we concluded that the thermal hydraulics feedbacks are considered

strong feedbacks and, therefore, their associated unknowns will be treated using the Newton’s

method. The remaining weak feedbacks will be treated in a nested iterative fashion.

Since a nested iterative approach is to be employed, we need to know what convergence or

stopping criteria should be utilized to guarantee the minimization of total computational costs

while still assuring the robustness of the solver. Discussions about the algorithm for the nested

iterative approach and the associated stopping criteria are presented later in this section.
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A linearized system of equations needs to be solved during each Newton iteration. We

need to decide on what solver to employ for solving these sets of linearized system of equations.

We decided to use one of the Krylov subspace solvers to perform this task. Our decision is

primarily influenced by the earlier success of utilizing the preconditioned BICGSTAB solver in

providing the NESTLE code [13] with substantial speedups, with reference to the red/black line

successive over relaxation (R/B LSOR) solver. The question about which Krylov solver to utilize

and what preconditioner to use will be addressed in this paper.

II. B. Mathematical Background

Consider a non-linear equation given by

, (2)

where the non-linear operator operates on the unknown vector whose vector dependence

indicates different reactor core properties. Eq. (2) includes appropriate boundary conditions and,

if an eigenvalue problem is involved, normalization constraint. For the problem at hand, the

unknown vector consists of all the unknowns and can be subdivided into the eigenvalue ( ),

where , the two-group neutron flux ( ), the strong non-linear feedback properties

( ), i.e. fuel temperature, coolant temperature, and coolant density, and the weak non-linear

feedback properties ( ), i.e. Xe135 and Sm149 number densities and nodal spatial coupling

correction coefficients. The unknown vector can be mathematically written as

. (3)

A Φ( ) Q=

A Φ

Φ λ

λ 1 keff⁄= φ

ξ

Ψ

Φ φT ξT λ Ψ
T

, , ,[ ]
T

=
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The subdivision on the non-linear feedback properties is performed in order to allow different

iterative update frequencies between the strong and the weak feedback properties. Expressing

Eq. (2) explicitly in terms of the eigenvalue, neutron flux and feedback properties, we obtain

. (4)

The first row of Eq. (4) indicates the balance equation for the neutron flux, i.e. the spatially

discretized form of the three-dimensional, two-group neutron diffusion equation. and

denote the loss and production operators, respectively. Note that these operators are independent

of flux. The second row of Eq. (4) represents some form of two-phase fluid mass, energy, and

momentum conservation equations, along with the constitutive equations which are used to

determine the coolant density distribution in the core, plus the core power level normalization

constraint. The third row states the balance equations for the weak non-linear feedback properties.

The traditional nested iterative algorithm for solving Eq. (4) can be mathematically

written as

, for , (5)

, for , (6)

and

, for , (7)

where , , and denote the fission source, strong nonlinear feedback properties, and weak

nonlinear feedback properties iterative counts, respectively. The indices with tildes on top of or

A Φ( )
M ξ Ψ,( ) λF ξ Ψ,( )–( )φ

T̂ φ ξ Ψ, ,( )

W φ ξ Ψ, ,( )

0

Q̂ξ

0

= =

M F

M ξn Ψo,( )φm 1+ λmF ξn Ψo,( )φm– 0= m 0 1 2 …, , ,=

T̂ φm̃ ξn 1+ Ψo, ,( ) Qξ= n 0 1 2 …, , ,=

W φm ξn Ψo 1+, ,( ) 0= o 0 1 2 …, , ,=

m n o
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underneath them indicate the frequency of update; for example, several fission source iterations

could be performed prior to updating the strong nonlinear feedback properties.

Ideally, it is desired to update the flux and the strong non-linear feedback properties

simultaneously. This can be done through a Newton type method [8, 9]. The implementation of

Newton’s method in this paper is focused only on treating the flux and the strong non-linear

feedback properties, i.e. the thermal hydraulics feedback properties. The remaining weak non-

linear feedback properties will be updated in an iterative fashion as additional loops outside the

Newton iteration loop.

The non-linear system of equations we are interested in solving utilizing the Newton’s

method can be written as

. (8)

The core power level constraint equation has been separated out of the operator in Eq. (8), with

the operator denoting the two-phase flow thermal hydraulics conservation and constitutive

equations. As noted earlier, since an eigenvalue equation is being solved, a constraint equation is

required, in this case to normalize the flux. The constraint equation allows the eigenvalue to be

introduced as an additional unknown. The exact Newton equation for non-linear equation, Eq. (8),

suppressing the dependence upon the weak non-linear feedbacks, , which are updated in an

outer iterative loop, can be expressed as

, (9)

where the Jacobian matrix has been defined as

B Θ( )
M ξ Ψ,( ) λF ξ Ψ,( )–( )φ

T φ ξ Ψ, ,( )

κΣf φ,〈 〉

≡ Q

0

Qξ

QP

≡=

T̂

T

Ψ

J Θm( )Θm 1+ R Θm( )=
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, (10)

, (11)

and

, (12)

with index now denoting the Newton iteration count. For our problem, the Jacobian matrix can

be written as

. (13)

Eq. (13) denotes a 3x3 block matrix whose block matrix components are denoted by for

. Using Eqs. (9) and (13), one obtains the following iterative algorithm (in similar

fashion to Eqs. (5) through (7)):

, (14)

, (15)

and

J Θm( )
Θ∂

∂
B Θ( )

Θm

≡

Θm φm
T

ξm
T

λm, ,[ ]
T

≡

R Θm( ) J Θm( )Θm B Θm( ) Q–( )–≡

m

J Θm( )

M ξ( ) λF ξ( )–[ ]
ξ∂

∂
M ξ( ) λ

ξ∂
∂

F ξ( )– 
 φ F– ξ( )φ

φ∂
∂

T φ ξ,( )
ξ∂

∂
T φ ξ,( ) 0

φ∂
∂ κΣ f φ,〈 〉

ξ∂
∂ κΣ f φ,〈 〉 0

Θm

=

J Θm( )i j,

i j, 1 2 3, ,=

J Θm( )1 1, φm 1+ J Θm( )1 2, ξm 1+ J Θm( )1 3, λm 1++ + =

J Θm( )1 1, φm J Θm( )1 2, ξm J Θm( )1 3, λm+ +( ) –

M ξm( ) λmF ξm( )–[ ]φm

J Θm( )2 1, φm 1+ J Θm( )2 2, ξm 1++ =

J Θm( )2 1, φm J Θm( )2 2, ξm T φm ξm,( ) Qξ–[ ]–+
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. (16)

Reintroducing the weak non-linear feedback values, they are determined by solving for using

, (17)

This set of equations is clearly more difficult to solve than the original matrix equations

associated with the traditional nested iterative approach due to the simultaneous couplings of

more unknowns. However, the Newton’s method is still attractive since it converges to the

solution at a-higher-than-linear rate provided that a good initial guess of unknown values is used.

II. C. Linearization Error Study

In order to assess the feasibility of employing the Newton’s method for treating the strong

non-linearities in the BWR core simulator model, we would like to first understand how accurate

the first order approximation is for our problem. A linearization error study has been performed to

answer this question. In addition to observing how significant the errors introduced by using the

first-order Newton’s method are, this study was performed to also check the singularity property

of the Jacobian matrix system at convergence and to serve as a tool to validate the derivation and

implementation of the linearized system of equations.

The linearization error study was performed on a 368 assembly GE BWR/4 core. Since

this study is focused on a single Newton step, the core simulator options for treating non-linear

feedbacks not explicitly treated with the Newton’s method, e.g. inlet coolant flow redistribution,

critical flow search, and fission products, are turned off. The study begins by obtaining the

solution at the 100% power level. Then, we performed linearization around this solution, i.e.

evaluate the Jacobian matrix at 100% power, and subsequently solve for the changes in the

J Θm( )3 1, φm 1+ J Θm( )3 2, ξm 1++ =

J Θm( )3 1, φm J Θm( )3 2, ξm κΣ f( )mφm〈 〉 QP–[ ]–+

Ψ

W Θm Ψo 1+,( ) 0=
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eigenvalue, two-group neutron flux, moderator pressure, density, void fraction, and internal

energy distribution at a perturbed core power level, 100+x%, via one Newton iteration. We also

solve for these core variables at the perturbed power level using a traditional iterative solver. The

difference between the exact changes, i.e. traditional solver, and the approximate changes, i.e. one

Newton iteration, in these variables are defined as the linearization errors.

It is anticipated that the linearization errors will grow as the value of the core power level

perturbation increases. However, since the two-group neutron flux and the thermal hydraulics

properties have spatial dependencies, it is not trivial to succinctly quantify the degradation in the

quality of the solutions as a result of applying a larger power perturbation. The error in the

eigenvalue as a function of core power level perturbation size is selected to serve as the overall

measure of linearization error. This is a compact manner to do the linearization error analysis

since the eigenvalue is a unique quantity for each power level and, hence, the accuracy in

predicting this value can be easily plotted as a function of core power level.

The comparison between the approximate and the exact change in keff as well as the error

of the predicted change in keff are presented in the top and bottom plots of Figure 1, respectively.

From these graphs, one can see that utilizing one iteration of the first order Newton’s method, the

change in the eigenvalue can be quite accurately predicted. As expected, the error grows as the

core being examined moves further away from the reference 100% core power level. However,

one should keep in mind that during the course of Newton iterations, the fluctuations in core

power will not likely come close to that caused by the full range of core power level perturbation

analyzed in this study. This follows since the Jacobian matrix will be updated at each Newton

iteration using the latest iterative values. Figure 2 shows the comparisons of the approximate and

exact changes in the fast flux distributions for four radial locations (as shown in the core map
11



below the plots) when the core power level is perturbed by +10%, i.e. 110% core power level.

Although these plots represent an extreme perturbation in the core power, the first-order

approximation still predicts the axial power distribution reasonably well. Note that slightly larger

differences are observed in radial location 04; however, recognizing the size of the relative power,

one can conclude that these larger differences are not too important since the absolute differences

are still relatively small. Based on these results, it is safe to assume that the errors introduced by

the first-order approximation are insignificant.

The other thing learned from this study is that the Jacobian matrix is not singular. The

singularity of the Jacobian matrix becomes a concern since the block, defined as

, is singular when the value of is the true eigenvalue associated with the

generalized eigenvalue problem. This is indeed the case for our linearization error study since we

utilize the eigenvalue problem solution (at 100% power level) as our reference. However, in

reality additional terms are added to to account for cross-section changes due to fuel

temperature changes. This follows since the cross-section is a function of fuel temperature, which

in turns is a function of power density, which in turns is a function of flux, and we reduce the

cross-section dependence to flux. These additional terms when added to the block prevent

this block from being singular.

II. D. Krylov Methods

Krylov methods are categorized as non-stationary iterative methods. For this family of

methods, information needed to advance from one iteration to the next keeps changing. This

J11

M ξ Ψ,( ) λF ξ Ψ,( )–( ) λ

J11

J11
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means that when solving Eq. (9) for a fixed Newton iteration , allowing us to suppress the

dependence and rewrite Eq. (9) as , we can express the nth Krylov iteration of as

, (18)

where is the iterative matrix and is the remainder. When using unpreconditioned Krylov

methods, the nth iteration of is an element of

(19)

which minimizes some norm measuring the distance between and the true solution, . In

Eq. (19), represents the initial guess, the initial residual ( ) is defined as

, (20)

and is the nth Krylov subspace. How the coefficients (multipliers)

of the bases for a particular Krylov subspace are calculated is what makes a Krylov method

unique from the others. A discussion about the initial development of Krylov methods can be

found in the literature [3, 12, 14]. Barrett et. al. [1] provides a compact but thorough discussion of

Krylov methods and also gives an introduction to some families of preconditioner matrices.

Examples of applications of Krylov methods in core simulator codes for reactor analysis are

available in [2], [4], [5], [6], and [15].

For this project, we require Krylov methods which can solve a non-symmetric coefficient

matrix since our Jacobian matrix is non-symmetric. We decided to examine three such Krylov

methods, namely the bi-conjugate gradient stabilized (BICGSTAB), conjugate gradient squared

m m

JΘ R= Θ

Θ n( ) GΘ n 1–( ) c+=

G c

Θ

Θ 0( ) span r 0( ) Jr 0( ) … J
n 1–

r 0( ), , ,
 
 
 

+

Θ n( ) Θ

Θ 0( ) r 0( )

r 0( ) R JΘ 0( )–=

span r 0( ) Jr 0( ) … J
n 1–

r 0( ), , ,
 
 
 
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(CGS), and restart generalized minimal residual (GMRES). The most computationally efficient

solver will be employed in the final implementation of the Newton-Krylov solver.

II. E. The Newton-Krylov Algorithm

The algorithm for the Newton-Krylov solver implemented in FORMOSA-B is depicted in

Figure 3. The Newton iteration performs simultaneous updates of the eigenvalue, two-group

neutron flux, and thermal hydraulics properties. Note that fission source iterations have been

completely eliminated. This is possible since the singular matrix system that appears in the

eigenvalue problems does not appear in Newton’s method, i.e. Jacobian matrix is non-singular.

Although this figure is fairly self-explanatory, there are two items which should be pointed out.

First, the weak non-linear feedback properties are being updated at a certain frequency of Newton

(outer) iterations. Second, the box labeled “Setup the Jacobian matrix system and perform the LU

factorization” is thicker than the other boxes to indicate that these processes are done at a certain

frequency depending upon whether an exact or inexact Newton’s method is utilized.

Given that the Newton-Krylov algorithm is a nested iterative algorithm, a specific

stopping criteria is needed for each level of the nested iterative loops. As the stopping criteria for

the Krylov solver, we require the L2-norm of the reduction in the residual to be less than a

specified value

, (21)

where

r m n,( ) 2

r m 0,( ) 2

--------------------- εKrylov≤
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, (22)

and the pair denotes the (Newton, Krylov) iteration step counts. Note that when this

Krylov iteration stopping criteria is satisfied, say at Krylov iteration , we denote .

For terminating the Newton iterations, the following stopping criteria is used:

. (23)

We realize that this stopping criteria only checks the neutron diffusion equation solution, while

the Jacobian matrix system also includes thermal hydraulics properties. Hence, this stopping

criteria was formulated by assuming that when the two-group fluxes and eigenvalue converge to

sufficient accuracy, the thermal hydraulics properties have already converged to the accuracy

desired. We have performed numerical tests to show that this is indeed a valid assumption.

Another advantage of utilizing this stopping criteria is related to the fact that the term whose norm

is taken and used as the numerator in Eq. (23) is readily available since it is part of the right hand

side vector for the subsequent Newton iteration. Therefore, evaluation of the Newton iteration’s

stopping criteria does not add much to the computational cost.

Similar to the traditional solver, to terminate the overall solver, we check the convergence

of the eigenvalue, fission neutron source density, and moderator density, in the outer most loop of

the nested loops, i.e. the weak non-linear feedback loop. Mathematically, these stopping criteria

can be written as

r m n,( )

R m( )1

R m( )2

R m( )3

J11 J12 J13

J21 J22 0

J31 J32 0

δφ m n,( )

δξ m n,( )

δλ m n,( )

–=

m n,( )

n̂ m( ) m n̂,( )=

M ξm Ψo,( )φm λmF ξm Ψo,( )φm– 2

λmF ξm Ψo,( )φm 2

-------------------------------------------------------------------------------------- εNewton≤
15



, (24)

, (25)

and

, (26)

where the superscript denotes the weak non-linear feedback iterative count.

III. DEVELOPMENT OF PRECONDITIONERS
In general, the rate of convergence of iterative methods depends on the spectral properties

of the coefficient matrix. For Krylov methods, the condition number of the coefficient matrix

plays an important role in determining the rate of convergence. One may attempt to transform the

original linear system into an equivalent system in the sense that it still has the same solution, but

it has a more favorable condition number. Such a transformation can be attained by utilizing a

preconditioner matrix.

One needs to realize that utilizing a preconditioner in a Krylov method adds some extra

computational time both in the initial setup and during the iterations for applying it. However,

there is a trade-off between the increasing computational time associated with constructing and

applying the preconditioner and the advantage of increased convergence rate. Therefore, the focus

of formulating a preconditioner is to minimize the additional incremental computational time

while maximizing the convergence rate so as to reduce the overall computational cost.

keff
o( )

keff
o 1–( )

–

keff
o

--------------------------------- εk≤

Fφ[ ]
o( )

Fφ[ ]
o 1–( )

– 2

Fφ[ ]
o( )

2

-------------------------------------------------------- εF≤

ρ o( ) ρ o 1–( )
– 2

ρ o( )
2

-------------------------------------- ερ≤

o
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Taking advantage of the structure of the coefficient matrix is a crucial factor in devising a

preconditioner. Another essential factor in the development of an effective preconditioner is an

understanding of the physics behind the constitutive equations forming the linear system. For

example, in approximating the original coefficient matrix, one can eliminate some elements of the

matrix which are known to be not too important in the sense that ignoring them will still produce

a solution close to the exact solution.

In formulating the preconditioners described in this section, a block incomplete LU

(BILU) factorization approach [5] is utilized as a part of the preconditioners. This factorization

was selected to be incorporated in the preconditioners since it is a straight-forward process which

requires a predetermined fixed number of operations dictated by the size of the problem and can

capture the stronger spatial and/or energy coupling of unknowns. Note that the size of the matrix

block to be factorized varies depending upon the arrangement of the unknowns.

III. A. Porsching’s Algorithm

The idea for this algorithm is introduced in a paper by Porsching et. al. [11] on hydraulic

networks. Using this algorithm, the components of the coefficient matrix of a linear system,

, are rearranged if possible into the following block form

, (27)

where, despite the matrix notation, and are actually column and row vectors,

respectively. In this section, note that matrix notation will always be used to denote the submatrix

component even though sometimes the vector notation is more appropriate. The system to be

solved can then be written as

Ax b=

A A11 A12

A21 0

=

A12 A21
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. (28)

The algorithm for solving this system of equations is straight-forward and is described in

Figure 4. Porsching’s algorithm is used as a part of the preconditioners introduced in the next

three subsections.

III. B. Preconditioner 1

The first type of preconditioner examined uses a node-wise grouping of the unknowns,

where all of the unknowns belonging to a particular node are grouped together. The

preconditioner can be symbolically written as

(29)

where the “hat” indicates a re-ordered Jacobian matrix block from what was introduced earlier.

The block has a block seven banded structure which represents the underlying node

coupling of the finite difference method applied to the neutron diffusion equation. Recall we are

using a nodal method but employing the non-linear iterative nodal method, which gives rise to the

finite difference method spatial coupling. Also included in are the thermal hydraulics

equations. Each entry of the block is a 6x6 matrix, while the entries of and blocks are

6x1 and 1x6 vectors, respectively, associated with the criticality constant.

This preconditioner is formulated based on the fact that the more components of the

original Jacobian matrix are included in the preconditioner matrix, the faster the convergence rate

A11 A12

A21 0

x1

x2

b1

b2

=

P1
Ĵ11 Ĵ12

Ĵ21 0

=

Ĵ11

Ĵ11

Ĵ11 Ĵ12 Ĵ21
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of the Krylov solver will be. In the outer shell of the preconditioner, the Porsching’s algorithm is

utilized to take advantage of the structure of the matrix depicted in Eq. (29). Within the

Porsching’s algorithm itself, we use a BILU approximation to determine the action of ,

which equates to solving for and in Figure 4. Note that some vectors, whose values do not

change during Krylov iterations, are saved in order to reduce the overall execution time.

III. C. Preconditioner 2

A core-wise grouping of the unknown types is used in the second type of preconditioner.

This grouping allows us to associate parts of the Jacobian to the underlying balance equations

since they are distinctly separated from one another. The preconditioner can be symbolically

written as

. (30)

In order to apply the Porsching’s algorithm, this preconditioner can be written in the same

manner as Eq. (29), where by inspection we can write

, (31)

, (32)

and

Ĵ11 
 

1–

u v

P2

J11 J12 J13

0 J22 0

J31 J32 0

=

Ĵ11
J11 J12

0 J22

=

Ĵ12 J13

0
=
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. (33)

When calculating the action of , the BILU approximation is used to determine the action of

. In addition, since each diagonal block of the submatrix is a lower triangular matrix

associated with coolant flow up a coolant channel, the action of can be completed by

performing a forward sweep.

This preconditioner was formulated to reduce the cost of factorizing the block and

subsequently the cost of performing the BILU approximation of Preconditioner 1. While the same

block seven banded structure is possessed by both the block of Preconditioner 1 and the

block of Preconditioner 2, the size of each block entry is significantly reduced from 6x6 in

Preconditioner 1 to just 2x2 in Preconditioner 2. However, while in Preconditioner 1 all entries of

the Jacobian matrix are used in the preconditioner, in Preconditioner 2 the block, which

physically represents the changes in the thermal hydraulics properties as a result of the change in

flux (power) distribution, is eliminated. The rest of the Krylov algorithm, where all entries of the

Jacobian matrix are considered, will correct for this imperfection.

III. D. Preconditioner 3

Preconditioner 3 also employs the core-wise grouping of the unknown types. However,

the original Jacobian matrix is slightly rearranged in this preconditioner. The preconditioner can

be symbolically written as

Ĵ21 J31 J32
=

Ĵ11
1–

J11
1–

J22

J22
1–

Ĵ11

Ĵ11 J11

J21
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, (34)

where

, (35)

, (36)

and

. (37)

When solving the preconditioner matrix system, due to the structure of the matrix,

changes in the flux distribution and eigenvalue can now be calculated first and subsequently used

for determining the changes in the thermal hydraulics properties. This is similar to the fission

source iterations and thermal hydraulics update in the traditional iterative solver. The Porsching’s

algorithm is used when determining the action of . The BILU approximation is used to

determine the action of within the Porsching’s algorithm.

III. E. Performance of the Preconditioners

Numerical experiments have been performed to examine the performance of these

preconditioners. A preliminary study was completed using three Krylov methods, namely

BICGSTAB, CGS, and restart GMRES methods. The purpose of this preliminary study is to

select a Krylov method to be employed in the final implementation of the Newton-Krylov solver

P3
J̃11 0

J̃21 J̃22

=

J̃11
J11 J13

J31 0

=

J̃21 J21 0=

J̃22 J22
=

J̃11
1–

J11
1–
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and to observe the performance of the preconditioners. The chosen Krylov method will be

examined further to check whether the conclusion from this preliminary study still holds.

For the preliminary study, a tight stopping criteria is used for the Krylov solvers to avoid

Krylov iteration error contamination of the Newton iteration. As a result, the same number of

Newton iterations is observed for all cases, enabling us to fairly compare the number of Krylov

iterations from these cases. The results from this study are summarized in Tables III and IV. The

stopping criteria for the Krylov iterations is and the stopping criteria for the

Newton iteration is . The true error is defined as

, (38)

where is the total number of spatial fuel nodes and represents the current Newton iteration

count. The reference flux solution is obtained using the traditional iterative algorithm with a set of

extremely tight stopping criteria. Also note that the preliminary study was performed on a

somewhat simplified 368 assembly BWR/4 core model. Although the geometry of the core is

maintained, the core is loaded with only three types of fuel bundles and the core does not have

radial reflectors. In addition, since the spacer-void model is not included in the derivation of the

Jacobian matrix, algebraic variable reduction allows us to reduce the number of thermal

hydraulics unknowns included in Newton’s method treatment to three, namely the node-wise

moderator pressure, density, and internal energy.

Four things were learned from this study. Firstly, from Table III one can see that

Preconditioner 1, which carries the most information from the original Jacobian matrix, needs the

fewest Krylov iterations to satisfy the stopping criteria with respect to the other two

εKrylov 5
5–×10=

εtrue 1
3–×10=
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preconditioners. Unfortunately, the computational cost of BILU factorizations for this

preconditioner is much higher than for the other preconditioners, making the overall performance

of this preconditioner inferior. Secondly, Table IV shows that while the other computational

components of the Newton part of the solver stay relatively constant, the computational cost of

the Jacobian matrix factorization is reduced by a factor of four for Preconditioners 2 and 3 relative

to Preconditioner 1. Subsequently, when applying the preconditioner in the Krylov part of the

solver, the computational costs for the solution of the preconditioned matrix system for

Preconditioners 2 and 3 are also reduced relative to the computational cost for Preconditioner 1.

For the preconditioner performance part of the study, we conclude that Preconditioner 3 provides

the lowest total solution time. Finally, for the Krylov solver part of the study, observing the results

shown in Table III, one can see that the BICGSTAB method outperforms the other Krylov

methods and, therefore, will be employed in the final implementation of the Newton-Krylov

solver along with Preconditioner 3.

Additional studies were performed to examine the performance of the preconditioners. For

this study, a more realistic 368 assembly GE BWR/4 core is utilized. Also note that for this study

the spacer-void model has been explicitly included as a part of the Jacobian matrix system. This

modification adds the void fraction as an additional unknown. While this change does not impact

the LU factorization cost for Preconditioners 2 and 3 since the submatrix to be factorized for these

preconditioners only has the neutronics part of the problem, i.e. the derivative of the neutron

diffusion equation, it changes the LU factorization cost of Preconditioner 1 dramatically since

now each entry of the becomes a 6x6 versus 5x5 matrix.

The results from this study are presented in Table V. While the cost for performing other

parts of the Newton iterations remains unchanged, the cost of the Jacobian matrix factorization for

Ĵ11
23



Preconditioners 2 and 3 is now reduced more significantly, by a factor of ~20, with respect to

Preconditioner 1. Subsequently, compared to Preconditioner 1, the cost of the preconditioner

solve is reduced by 45% and 70% for Preconditioners 2 and 3, respectively. Regardless of the

BICGSTAB stopping criteria, the results presented in this table exhibit a consistent trend with the

results from the preliminary study; hence, we will utilize the BICGSTAB solver along with

Preconditioner 3 in the final implementation of the Newton-Krylov solver.

IV. IMPLEMENTATION OF INEXACT NEWTON’S METHODS

Consider Eq. (8), a non-linear system of equations

. (39)

In the implementation of the exact Newton’s method, the Jacobian ( ) of the operator is first

determined. If necessary, the Jacobian matrix is factorized (actually the preconditioner matrix

which approximates ) so that the results of the factorization can later be used as part of the

algorithm for solving the linearized system of equations. Regardless of the solver used, the

following linearized system of equations needs to be solved to obtain the next iterative values of

the unknowns ( ):

, (40)

where is the Newton iterative count and is the Jacobian of evaluated at the current

iterative value of the unknowns ( ). The algorithm for the overall Newton’s method is shown

in Figure 5.
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IV. A. The Chord Method

The costs for computing the Jacobian coefficient matrix and its factorization are

significant. One approach to reduce this cost is to move these operations outside the loop

indicated on Figure 5. This implies that the linear approximation of solved at each

Newton iteration has the derivative (Jacobian coefficient matrix) determined at only the initial

iteration. This method is called the Chord method [8] and the algorithm for this method is shown

in Figure 6. For the Chord method, the linearized system of equations solved at each iteration can

be symbolically written as

. (41)

Although the cost per Newton iteration can be considerably reduced by utilizing the Chord

method, there is a trade-off between this reduction and the increase in the total number of Newton

iterations due to the approximation introduced by this method. Therefore, a successful execution

of a Chord method will highly depend upon the efficiency of the linearized equations solver. The

Chord method also has a higher likelihood of not converging due to misdirection of the search.

IV. B. The Shamanskii’s Method

The Shamanskii’s method [8] is introduced to help alleviate the excessive increase in the

Newton iterations resulting from utilizing the Chord method by providing a better approximation

of the Jacobian coefficient matrix. This is accomplished by updating the Jacobian coefficient

matrix at a certain frequency. The algorithm for this method is shown in Figure 7. For the

Shamanskii’s method, the linearized system of equations solved at each iteration can be written as

, (42)
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where indicates the past Newton iteration during which the Jacobian matrix is updated for

the mth Newton iteration. The number of Newton iterations for the Shamanskii’s method should

fall between those of exact Newton and Chord methods.

In utilizing the Shamanskii’s method, a parametric study should be performed to

determine the optimum frequency for the Jacobian matrix update. An update frequency of

denotes that the Jacobian matrix is updated every Newton iterations. Therefore, using an

update frequency of 1 makes the Shamanskii’s method equivalent to the exact Newton’s method

and using an update frequency of makes it equivalent to the Chord method.

V. RESULTS

Presented in this section are the results from testing the Newton-BICGSTAB solver

utilizing a single loading pattern (LP) as well as multiple LPs. The result from a control rod

pattern optimization run is also included to show the performance of the solver for an

optimization run. We use this approach to test the robustness of the solver against an increasing

number of problems starting from analyzing a single configuration, e.g. when performing

preconditioner studies, to evaluating numerous core configurations during an optimization run.

We concluded this section with a brief discussion on the performance of inexact Newton’s

methods.

V. A. Evaluation of a Single Loading Pattern

After deciding on utilizing the preconditioned BICGSTAB (with Preconditioner 3) as the

solver for the linearized system of equations, we tested the solver on a single loading pattern to

observe the average behavior of the solver over several burnup steps. This exercise is also

m̃ m( )

N

N

∞
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intended to find a set of stopping criteria which provides the highest speedup while still

maintaining the robustness of the solver.

The model used for this study is an 800 assembly GE BWR/6 core. The cycle modeled has

17 burnup steps. The nodal method is employed to solved the three-dimensional, two-group

neutron diffusion equation. The three-equation mixture drift flux model is used to treat the two-

phase flow in the core. An inlet flow redistribution calculation is also performed to obtain uniform

inlet and exit pressures across the core. In addition, the critical flow search is also executed.

The test is actually divided into two parts. In the first part, the true errors in the neutron

flux distribution and the moderator density distributions are used to terminate the overall Newton-

BICGSTAB solver. The true error for the neutron flux distribution is defined as follow

, (43)

where denotes the total number of spatial fuel nodes and represents the current Newton

iteration count. Similarly, the true error for the moderator density distribution is defined as

. (44)

The reference quantities are obtained using the traditional iterative algorithm with a set of

extremely tight stopping criteria. The results from this part of the test are presented in Table VI.

Speedup in Table VI denotes the ratio of the CPU times for the traditional solver to Newton-

BICGSTAB solver, both utilizing the same true error stopping criteria. We have chosen the true

stopping criteria to be for both the neutron flux and moderator density distributions. This

implies that the results from these solvers are, on average, within 1% of the true solutions. This
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test shows that the Newton-BICGSTAB solver can provide a speedup of 1.67 with respect to the

traditional solver. However, in practice the true solutions are not available and, hence, the

measure of true error cannot be utilized as the stopping criteria. Therefore, we still need to

evaluate the performance of the solver when the real stopping criteria are utilized.

The second part of the test is aimed to answer this question. The stopping criteria utilized

for the overall solver are 1e-4, 5e-4, and 5e-2 for , , and (as defined in Eqs. (24) through

(26)), respectively. The results from this part of the test are summarized in Table VII and Figure 8.

Speedup in Table VII again denotes the ratio of the CPU times for the traditional solver to

Newton-BICGSTAB solver, both utilizing the same overall stopping criteria. The purpose of

examining multiple pairs of Newton and Krylov stopping criteria is three-fold. First, we would

like to observe the variation in the number of Newton iterations as a function of stopping criteria.

Figure 8 shows that for a particular set of stopping criteria, the number of Newton iterations does

not change much throughout the depletion steps. Furthermore, as expected the total number of

Newton iterations increases as the stopping criteria is reduced. Second, we would like to

understand the trade-off between how much we gain in terms of improved agreement in the

results against how much we lose in terms of potential speedup. Results in Table VII indicate that

while there is no apparent improvement in the quality of the results as tighter stopping criteria are

employed, significant decreases in the speedup factor are observed. These results suggest that a

set of relatively relaxed stopping criteria should be employed by the solver. Lastly, we would like

to examine the possibility of employing a set of dynamic stopping criteria, i.e. changing stopping

criteria as the iteration progresses. This is what Case 7 in Table VII represents. The philosophy

used in dynamically changing the stopping criteria is that a more relaxed stopping criteria can be

employed early in the iteration, while a tighter stopping criteria is needed when we are close to a

εk εF ερ
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converged solution. For example, employing a relaxed BICGSTAB stopping criteria in the first

couple of Newton iterations will surely introduce error contaminations to the Newton iteration.

However, at this stage since we are still far away from the solution, so we believe that these

contaminations are much less significant than the error introduced by the first-order

approximation of the Newton’s method. Later on when we are close to the solution, since the

Jacobian matrix is now “pointing” in the right direction and we would like to reach the solution as

fast as possible, ideally in one iteration, we have to solve for the changes in the variables as

accurately as we can; therefore, a tighter BICGSTAB stopping criteria is employed. The result

shown in the last column of Table VII indicates that this approach can produce higher speedup

than the statically determined set of stopping criteria.

V. B. Evaluation of Multiple Loading Patterns

The robustness of the solver utilizing the chosen set of stopping criteria from the single LP

study, i.e. the dynamically determined stopping criteria, is examined further by testing the solver

using multiple LPs. Two core types are evaluated during this study. The first core is an 800

assembly GE BWR/6 core. The cycle modeled has 17 burnup steps. Two-phase thermal

hydraulics model with inlet flow redistribution is employed. In addition, the critical flow search is

also performed. The second core is a 368 assembly GE BWR/4 core. The cycle has 10 depletion

steps. The same thermal hydraulics model as the first core type is employed; however, no critical

flow search is completed. For both core types, the nodal method is applied for solving the three-

dimensional, two-group neutron diffusion equation.

The results from the multiple loading patterns evaluation are presented in Figures 9 and 10

for the first and second core types, respectively. The top part of Figure 9 depicts the agreement in

the end of cycle (EOC) flow fraction between the traditional and the Newton-BICGSTAB solvers
29



for the first core type. The stopping criteria for the critical flow search, i.e. the maximum

difference allowed between the predicted and target keff value, is set to 25 pcm for this problem.

Therefore, the difference between the two converged keff values can be as large as 50 pcm, which

clearly can deteriorate the agreement in the EOC flow fraction as well. The top part of Figure 10

presents the agreement in the keff value between the two solvers for the second core type. The

bottom part of these two figures show the agreement in the core limiting thermal margins, e.g.

MFLPD, MAPRAT, and MFLCPR. Based on these plots, one can see that the agreement between

the two solvers is excellent. The average speedups for the 25 LPs evaluated are 1.708 and 1.697

for the 800 and 368 assembly cores, respectively, consistent with the result from the single LP

evaluation. On average, we can attribute approximately 48% of the speedup to the BICGSTAB

solver and the remaining 52% to the Newton’s method.

V. C. Results from a Control Rod Pattern Optimization Run

Since the principal objective of this project is to reduce the CPU execution time of an

optimization run, it is appropriate to use an optimization run as the ultimate robustness test for the

Newton-BICGSTAB solver. The core model used for the optimization is an 800 assembly GE

BWR/6 core. For the thermal hydraulics model, in addition to the model used in the previous

studies, the spacer-void model which corrects the void fraction for the effects of spacer grids is

also incorporated. The cycle analyzed has 10 depletion steps.

The results from this study are summarized in Table VIII. Both optimization runs satisfy

the thermal margin constraints imposed and produce similar quality results. With regard to the

overall execution time, the Newton-BICGSTAB solver provides a speedup of 1.896. However,

after taking into account that a different number of CRPs are evaluated in each run, the average
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speedup gained by the new solver is around 1.61, which is consistent with what was observed in

the previous studies.

V. D. Results from the Inexact Newton’s Method Study

The feasibility of employing an inexact Newton’s method to provide an additional

speedup to the Newton-BICGSTAB solver has been assessed. The study was performed on the

same core model employed in the single LP evaluation above. The results from this study are

presented in Table IX. From this table, one can see that initially a less frequent update of the

Jacobian matrix, i.e. higher n value in the Shamanskii[n] method, provides additional speedup.

This follows since the CPU time savings associated with less frequent Jacobian matrix updates

more than offsets the penalty of increasing number of Newton iterations. However, if the

frequency of the Jacobian matrix update is relaxed further, speedup is degraded since the increase

in Newton iterations more than offsets the CPU time savings associated with less frequent

Jacobian matrix updates. This trade-off results in an optimum performance by the Shamanskii[5]-

BICGSTAB solver, which provides an additional 10% reduction in the execution time.

When implementing the Shamanskii’s method, we expected that the number of Newton

iterations will grow with respect to the exact Newton’s method due to the inexact nature of the

method, but should not exceed the number of Newton iterations associated with the Chord

method. Table IX exhibits this expected behavior, where the numbers of Newton iterations

associated with the exact Newton’s method and the Chord method provide the lower and upper

limits for the Shamanskii’s method.
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VI. CONCLUSIONS AND AREAS FOR FUTURE PROJECTS

The main objective of this project, which is to reduce the CPU execution time of BWR

core simulators, has been accomplished by virtue of the implementation of a robust and

computationally efficient Newton-BICGSTAB solver. An overall speedup of 1.7 has been

achieved with reference to the traditional solver. If speedup is only measured for the solver

portion of the core simulator, the speedup increases to 1.9. In terms of what achieves the overall

speedup, about 48% is associated with BICGSTAB and the remaining 52% is associated with

Newton’s method. The robustness of the solver has been tested against numerous core

configurations and consistent results have been observed each time. More importantly, this project

has laid a foundation upon which numerous future projects can be developed in this new area of

nuclear engineering research.

A key to a successful implementation of the new solver is the development of a

preconditioner for the BICGSTAB solver. The performance of the current Newton-BICGSTAB

solver can likely be further improved by devising a more sophisticated preconditioner. For

example, a preconditioner which is suitable for parallel computations could substantially further

reduce the computational time.

The implementation of an appropriate inexact Newton’s method is another way to

improve the performance of the Newton-BICGSTAB solver. However, the implementation is not

limited to the Chord and Shamanskii’s method, but also includes any approximation introduced to

the exact Newton’s method. For example, keeping other parts of the exact Newton-BICGSTAB

algorithm unchanged, we can elect to perform the LU factorization of the preconditioner matrix

less frequently to save execution time.
32



Inclusion of more non-linear variables, e.g. the weak feedbacks, in the Newton’s method

treatment is another topic worthy of examination. This will require the development of a new

preconditioner since the structure of the Jacobian matrix changes as more variables are included.
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Figure 1. Linearization error of the keff value.
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Figure 2. Exact vs. approximate fast flux changes for +10% power perturbation.
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Initialization

Setup the Jacobian matrix system
and perform the LU factorization
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Figure 3: The Newton-Krylov algorithm.
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Figure 4: Porsching’s algorithm.
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Initialization

Evaluate Γ Θ
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( ) 2 εNewton>

output Θ
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Figure 5. Exact Newton algorithm.
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m( )

( )

Compute JΓ
Θ

0( )

JΓ
Θ

0( )
LU=Factor

LUδΘ Γ Θ
m( )

( )–=Solve

Θ
m 1+( )

Θ
m( )

δΘ+=Γ Θ
m 1+( )

( ) 2 εNewton>

output Θ

yes

no

Figure 6. Chord method.
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Evaluate Γ Θ
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Multiple LP with criticality search on - BWR/6 800 FA w/ 17 depletion steps
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Figure 9.  Multiple LPs results - 800 F/A GE BWR/6 core.
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Figure 10.  Multiple LPs results - 368 F/A GE BWR/4 core.
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Table I: Cases Examined and Stopping Criteria.

Case NEM TH
Flow

Redistribution
Critical
Flow

Spacer
Void

Fission
Product

1 On Off Off Off Off

On

2 Off On Off Off Off

3 Off On On Off Off

4 Off On On On Off

5 Off On Off Off On

6 On On Off Off Off

7 On On On Off Off

8 On On On On Off

9 On On On On On

10 On On On On Off Off

Stopping Criteria

; ;

Note: and are the two consecutive outer most loop iterations.

Loose Stopping Criteria 5e-4 1e-4 5e-2

Tighter Stopping Criteria 1e-4 5e-5 2e-4

keff
l( )

keff
l 1–( )

–

keff
l

------------------------------- εk≤ ρ l( ) ρ l 1–( )
– 2

ρ l( )
2

------------------------------------ ερ≤ Fφ[ ]
l( )

Fφ[ ]
l 1–( )

– 2

Fφ[ ]
l( )

2

------------------------------------------------------ εF≤

l l 1–

εF εk ερ
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Table II: Relative Changes in the Number of Outer
Iterations.

Case

Core Type

368
assembly

560
assembly

724
assembly

800
assembly

Loose Stopping Criteria

1 1.20 1.11 1.06 1.10

2 1.69 1.41 1.31 1.56

3 1.67 1.38 1.33 1.61

4 2.62 1.95 2.44 1.92

5 1.72 1.40 n/a 1.56

6 1.69 1.41 1.33 1.54

7 1.67 1.38 1.35 1.61

8 2.42 1.75 2.27 1.76

9 2.33 1.98 n/a 2.09

10 1.96 1.60 1.39 1.81

Tighter Stopping Criteria

1 1.32 1.29 1.03 1.10

2 1.96 1.46 1.34 1.54

3 1.85 1.51 1.32 1.62

4 2.65 2.15 2.22 1.96

5 2.52 1.59 n/a 1.66

6 1.85 1.54 1.30 1.57

7 1.85 1.54 1.30 1.60

8 2.44 1.97 2.17 1.75

9 2.97 2.19 n/a 2.18

10 2.23 1.75 1.40 1.85
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1: Timing was performed on a 440 MHz SUN Ultra-10 machine.

Table III: Preconditioner Performance for a Simplified 368 Assembly GE BWR/4
Core Model.

Variable
BICGSTAB CGS GMRES(5)

Krylov Iterations 44 47 51 57 61 63 93 130 127

Newton Iterations 5 5 5 5 5 5 5 5 5

Execution Time

(in seconds1)

3.88 3.15 2.97 4.47 3.60 3.28 5.42 5.35 4.84

P1 P2 P3 P1 P2 P3 P1 P2 P3
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1: Timing was performed on a 440 MHz SUN Ultra-10 machine.

Table IV: Detail Time Allocation (in seconds1) for a Simplified 368 Assembly GE
BWR/4 Core Model.

Variable
BICGSTAB CGS GMRES(5)

Initialization 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Newton part of the solver

Jacobian Matrix Setup 0.42 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.43

Matrix Factorization 0.28 0.07 0.07 0.28 0.07 0.07 0.28 0.07 0.07

Variable Updates 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Derivatives Calcula-
tion

0.38 0.38 0.37 0.37 0.37 0.39 0.37 0.37 0.38

Setup FDM Matrix
and RHS Vector

0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Total Newton 1.39 1.18 1.18 1.38 1.17 1.19 1.38 1.17 1.19

Krylov part of the solver

Preconditioner Solve 1.61 1.03 0.85 2.08 1.37 1.09 2.24 1.82 1.39

Matrix-Vector
Operation

0.43 0.49 0.47 0.53 0.59 0.53 0.93 1.29 1.20

Inner Product 0.06 0.07 0.07 0.04 0.04 0.04 0.03 0.04 0.04

Vector Updates 0.10 0.10 0.11 0.15 0.14 0.14 0.51 0.70 0.69

Other Operations in
Krylov

0.02 0.03 0.03 0.02 0.02 0.02 0.05 0.06 0.06

Total Krylov 2.22 1.72 1.52 2.82 2.16 1.82 3.76 3.91 3.38

Others 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

P1 P2 P3 P1 P2 P3 P1 P2 P3
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1: Timing was performed on a 440 MHz SUN Ultra-10 machine.

Table V: Preconditioner Performance (in seconds1) for a Realistic 368 Assembly GE
BWR/4 Core Model.

Variable

Initialization 0.048 0.048 0.048 0.048 0.048 0.049 0.049 0.048 0.048

Newton part of the solver

Jacobian Matrix Setup 1.293 1.290 1.289 1.292 1.295 1.291 1.291 1.287 1.296

Jacobian Factorization 0.634 0.029 0.030 0.622 0.030 0.030 0.620 0.030 0.030

Variable Updates 0.514 0.514 0.514 0.513 0.514 0.514 0.513 0.514 0.515

Derivatives Calculation 0.042 0.042 0.043 0.043 0.042 0.043 0.043 0.043 0.043

Setup FDM Matrix and
RHS Vector

0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.087

Krylov part of the solver

Preconditioner Solve 4.625 2.487 1.418 5.287 2.768 1.578 5.847 3.134 1.809

Matrix-Vector
Operation

2.909 3.136 3.106 3.349 3.498 3.511 3.789 4.024 4.002

Inner Product 0.117 0.129 0.130 0.138 0.144 0.146 0.156 0.165 0.162

Vector Updates 0.217 0.237 0.233 0.250 0.267 0.262 0.281 0.310 0.297

Iterations

Newton Iteration 8 8 8 8 8 8 8 8 8

Krylov Iteration 46 51 51 53 57 57 60 65 65

Avg. Krylov/Newton 5.75 6.38 6.38 6.63 7.13 7.13 7.50 8.13 8.13

εKrylov 1
3–×10= εKrylov 1

4–×10= εKrylov 1
5–×10=

P1 P2 P3 P1 P2 P3 P1 P2 P3
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Table VI: The Newton-BICGSTAB Performance on a Single LP
Using True Error Stopping Criteria.

Cases

Case 1 Case 2

Numerical Information

Newton S.C. 1.00e-2 5.00e-3

Krylov S.C. 1.00e-2 5.00e-3

1.00e-2 1.00e-2

1.00e-2 1.00e-2

Newton/BU Step 11.53 12.94

Speedup 1.67 1.55

Results Comparison (average differences)

keff (in pcm) 14.84 12.77

Flow Fraction 0.0041 0.0032

MFLPD 5.8235e-4 5.7059e-4

MAPRAT 6.8824e-4 6.2355e-4

MFLCPR 3.9882e-3 3.1765e-3

εtrue
φ

εtrue
ρ
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Table VII: The Newton-BICGSTAB Performance on a Single LP.

Cases

Case1 Case2 Case3 Case4 Case5 Case6 Case7

Numerical Information

Newton S.C. 1.00e-2 1.00e-3 5.00e-4 1.00e-2 1.00e-3 5.00e-4 Variable

Krylov S.C 1.00e-2 1.00e-2 1.00e-2 5.00e-3 5.00e-3 5.00e-3 Variable

Newton/BU Step 10.88 14.24 16.18 10.82 14.18 16.18 9.71

Speedup 1.59 1.29 1.17 1.59 1.31 1.18 1.76

Results Comparison (average differences)

keff (in pcm) 15.91 16.39 17.31 15.49 18.14 17.17 15.46

Flow fraction 0.0044 0.0042 0.0044 0.0041 0.0045 0.0043 0.0042

MFLPD 6.00e-4 6.29e-4 6.65e-4 6.29e-4 7.06e-4 6.64e-4 5.71e-4

MAPRAT 7.82e-4 8.71e-4 8.94e-4 8.35e-4 9.29e-4 8.94e-4 7.94e-4

MFLCPR 4.25e-3 4.17e-3 4.35e-3 4.08e-3 4.52e-3 4.33e-3 4.01e-3
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1: Timing was performed on a 2 GHz DELL 530 workstation.

Table VIII: CRP Optimization Results.

Variable Constraint
Reference

Pattern

Optimized Pattern

LSOR
Newton-

BICGSTAB

MFLPD <0.940 0.9540 0.9417 0.9396

MAPRAT <0.940 0.8598 0.8848 0.8733

MFLCPR <0.940 0.9456 0.9298 0.9235

Number of CRPs evaluated 209 178

Time (sec1) 1261 665
53



(1) : Timing was performed on a 2GHz DELL 530 workstation.
(2) : The n in Shamanskii[n] denotes the Jacobian matrix update frequency.

Table IX: Inexact Newton’s Method Results.

Method Time(1)

(seconds)
Newton
Iteration

BICGSTAB
Iteration

Weak
Feedback
Iteration

Newton 62.88 166 302 154

Chord 63.49 194 385 173

Shamanskii[2](2) 59.19 170 327 153

Shamanskii[3] 58.14 173 327 156

Shamanskii[4] 57.41 174 324 158

Shamanskii[5] 56.41 173 318 160

Shamanskii[6] 56.84 174 338 156

Shamanskii[7] 57.78 177 348 159

Shamanskii[8] 60.58 185 358 164
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